THE 1994 HOWARD UNIVERSITY GRADUATE RESEARCH SYMPOSIUM

LASER SPECTROSCOPY OF ALKYNE AND ALEXYTHIO RADICALS

Mohammed M. Namal, Karanag Zhu, and Prabhakar Mitra

Laser Spectroscopy Laboratory
Department of Physics & Astronomy
Howard University
Washington, D.C. 20059

The alkyne (RC≡CH, C≡CBr, C≡CCl), and alkythio (R:S) radicals are significant reactive intermediates in gas-phase atmospheric and combustion processes. Laser-induced fluorescence (LIF), in association with a supersonic jet expansion, has been employed to probe the spectroscopy of these radicals. RO radicals were generated in situ in the supersonic expansion by excimer laser (KrF @ 248 nm) photolysis of RO(N), while RS molecular fragments were produced from similar photolysis of RS(N). Both Me2YAG-pumped and excimer-pumped tunable dye laser systems have been used to record rotational-vibrational excitation spectra of the jet-cooled RO and RS radicals. Depressed fluorescence spectra of CH3O and C3H6 were obtained by exciting the molecules at the wavelengths of a strong rotational transition within a specific vibronic band. Rotational and vibrational frequencies have been assigned and least-squares fit performed to obtain molecular parameters for the free radicals in both upper and lower electronic states.

Acknowledgments: Financial support from the NASA Center for the Study of Terrestrial and Extraterrestrial Atmospheres (NASA NASW-2950), U.S. Environment Protection Agency’s Office of Exploration Research (R821773-01-A), and the Collaborative Core Unit of Howard University’s Graduate School of Arts & Sciences is gratefully acknowledged.

Research Faculty Mentor: Dr. Prabhakar Mitra

LASERS AND LIPOSOMES: A SUCCESSFUL MARRIAGE FOR DYE RELEASE AND DRUG DELIVERY

Michael A. Hilt and Prabhakar Mitra

Laser Spectroscopy Laboratory
Department of Physics & Astronomy
Howard University
Washington, D.C. 20059

Liposomes are vesicles composed of phospholipid bilayers distributed in an aqueous environment. Liposomes have structural similarities to membranes of biological cells and lipids vesicles. We have prepared liposomes with dyes either encapsulated in the internal volume (e.g. rhodamine) or intercalated in the bilayer membrane (e.g. methylene blue). One of the main aims of these investigations has been to release efficiently the internal contents of the liposome by pulsed laser excitation. A single 5 ns wide pulse at 532 nm caused significant release of liposome contents, being dependent on liposome size, internal dye concentration, and pulse energy density. Time-correlated single photon counting measurements performed provided insight into the distribution of dye molecules in the interior of the liposome and the bilayer. This technique of laser-mediated release of dyes from liposomes can be used for targeted release of drugs and for localized photothermal release of dye-drug complexes leading to destruction of tumor tissue.

Acknowledgments: Financial support from the Minority Access to Research Careers (NARSIC) program, the National Aeronautics & Space Administration (NASA NAGW-2950) and Howard University’s Graduate School of Arts & Sciences is gratefully acknowledged.

Research Faculty Mentor: Dr. Prabhakar Mitra

QUANTIFYING SOFTWARE USING BOUNDARY VALUE ANALYSIS

Adrian Neilson, William F. Charles, Department of Systems and Computer Science, Graduate School of Arts and Sciences, Howard University, Washington, D.C. 20059.

Recently, there has been a great deal of interest in defining appropriate ways to measure software to provide feedback to developers that can be used in the design process to avoid unnecessary complexity and thus defective software. Software metrics are used to characterize the essential features of software quantitatively, so that classification, comparison, and mathematical analysis can be applied. After a number of useful metric is identified, it is then important to measure software in an algorithmic and objective fashion, so that the values of the selected metrics are consistent among different software products, and are independent of the measure. A software metric is defined by a rule by which a given software related product can be quantified.

Boundary Value Analysis (BVA) estimates the amount of "black box" or specification-based testing necessary to verify software. It is a well-defined number that may be computed for software that is coded or that is specified in sufficient detail to determine all interfaces to other modules, whether the interface is by arguments to the module or by access to global variables. Thus, the BVA metric can be computed in any stage beyond the specifications in the software life cycle.

The BVA metric is based on the number and type of input parameters to programs subroutines. As such, it is one measure of program modularity. It is calculated using a count of the number of test cases needed to separate the domain of all possible test cases into regions where the selection of a test case chosen from any one of these regions is essentially as likely to produce a software fault as any other test case chosen from the same region.

The BVA metric is different from conventional software metrics such as Halstead and McCabe analyst, in that it uses data structures to measure the complexity of software such as metrics, ignoring data organization. With the growth of object-oriented technology it is important to be able to measure software in terms of its component objects, or data structures.

The BVA metric was developed at Howard University as a first generation academic research tool. The results of the BVA analysis provide details on data complexity that offers new insights into software behavior.

(Funded by Wright Laboratories, Contract Number: F30602-91-C-1750)
Research Faculty Mentor: Donald Leach, Ph.D. and Dr. Coleman, Ph.D.)

ANALYSIS OF CONNECTIVE TISSUE PROTEIN MARKER CONTENT OF VARIOUS TUMORS AND TRANSPLANTED CELL LINES

Alissa A. Beutels and Arlene A. Day, Ph.D., Departments of Microbiology and Cancer Center, Howard University, Washington, D.C. 20059.

Connective tissue matrix proteins comprise the structural network of tissues and organs. The role of these proteins is to stabilize and form a net to partition and support tissues. It is known that transformed cells and tumors have the ability to spread to distant organs - metastasize. The goal of this project was to determine whether the process of transformation compromises the integrity of this fibrillar network by influencing the synthesis of connective tissue proteins. Comparisons of paired sets of tissue or cells (i.e. normal cells versus transformed or tumor cells from the same organ system) for the presence or absence of various connective tissue proteins were made. Several cell types were utilized. Northern blot analyses were employed using standardized concentrations of RNA and "cDNA of several connective tissue (extracellular matrix) proteins as probes. In this manner it was determined whether the various connective tissue proteins were present. Comparisons of transcriptional levels of the various connective tissue proteins were made. The preliminary studies for this project show that there is differential expression of beta actin and osteonectin between transformed cell lines and specific types of cancer.

Research Faculty Mentor: Arlene A. Day, Ph.D.