LASER SPECTROSCOPY OF ORGANIC FREE RADICALS OF ENVIRONMENTAL AND ATMOSPHERIC SIGNIFICANCE

Prabhakar Misra, Xinning Zhu, Abdullahi H. Nur, Mohammed M. Kamal, Hosie L. Bryant, Jr., and Michael King

Laser Spectroscopy Laboratory
Department of Physics and Astronomy
Howard University
Washington, D.C. 20059

Abstract

Laser excitation spectra of organic free radicals, namely the alkoxy and alkylthio molecules, were recorded in a supersonic jet expansion and analyzed. The members of the alkoxy family include methoxy (CH$_3$O), ethoxy (C$_2$H$_5$O), and isoproxy (i-C$_3$H$_7$O), while the alkylthio molecules studied were methylthio (CH$_3$S), ethylthio (C$_2$H$_5$S), and isopropylthio (i-C$_3$H$_7$S). Extensive rovibronic spectra of these supersonically cooled radicals have helped determine important molecular parameters characterizing the upper and lower electronic states involved in the transitions. Several vibrational frequencies for the ground electronic state of C$_2$H$_3$O are being reported for the first time.

Introduction

Organic radicals such as the alkoxies (RO; R = CH$_3$, C$_2$H$_5$, i-C$_3$H$_7$) and alkylthios (RS) are significant chemical intermediates in environmental and atmospheric processes [1]. The alkoxy radicals play a leading role as oxidation intermediates in the combustion of hydrocarbons and in air pollution [2]. The alkoxies are also of considerable interest in the photochemistry of the upper atmosphere [3] and are important in astrophysical work. Alkylthio radicals, on the other hand, are important chemical intermediates in the oxidation of reduced sulfur compounds in the atmosphere and are involved in the combustion of sulfur-rich fuels [4].
Laser-induced fluorescence (LIF) excitation spectra of jet-cooled RO and RS radicals [5] were obtained with a frequency-doubled Nd:YAG-pumped dye laser. Low resolution (0.2 cm⁻¹) LIF spectra were used for vibronic assignments, while high resolution (0.07 cm⁻¹) rotationally-resolved spectra provided accurate rotational parameters characteristic of the upper and lower electronic states. Dispersed fluorescence spectra obtained employing a high resolution monochromator were used for vibrational assignments.

Experimental

The RO radicals were generated in situ in a supersonic jet expansion by the excimer laser (KrF @ 248 nm) photolysis of alkynitriles (RONO). While, the RS radicals were produced by the excimer-induced photodissociation of R₂S₂. The precursors (typically 1-2% concentration by volume) were transported by helium in separate experiments under high pressure (12-14 atm) and seeded into an expansion chamber employing a pulsed valve. Nascent RO and RS radicals in the jet expansion were excited with a frequency-doubled Nd:YAG-pumped dye laser in the UV. The tunable dye laser had a nominal linewidth of 0.07 cm⁻¹ and the typical time delay between the photolysis and excitation beams was 6-8 μs. Optogalvanic transitions excited in an Fe-Ne hollow-cathode discharge lamp were used to calibrate the wavelength of the dye laser [6].

Dispersed fluorescence spectra of the RO and RS radicals were recorded by exciting the molecules at the wavelength of a rotational transition within a vibronic band. The total fluorescence was focused onto the entrance slit of either a 0.6 m monochromator (equipped with a 1800 grooves/mm grating of resolution 0.3 nm) used in conjunction with a photomultiplier tube, or a 0.275 m monochromator (with a 1200 grooves/mm grating of resolution 0.5 nm) connected to a Charge-Coupled-Device (CCD) detector. The grating dispersed the fluorescence and enabled recording of the wavelength-resolved emission spectra of the RO and RS radicals.

Results and Discussion

Figure 1 shows a rotationally-resolved high resolution spectrum of ethoxy (C₂H₅O). C₂H₅O shows a C-type perpendicular band structure [7] of a near prolate symmetric top molecule (|κ| > 0.9) as illustrated by the rotational structure of the 10^3_0 11^1₀ band displayed in Fig. 1. The ν₁₀ mode corresponds to the symmetric C-O stretch vibration. Electronic wavefunctions of C₂H₅O transform according to one of the two irreducible representations of the C₃ point group. A detailed high resolution analysis using optogalvanic transitions for calibration of the excitation spectrum and employing prolate symmetric top quantum numbers for the rotational assignments of the (A or B) -X 10^3_0 11^1₀ band of ethoxy gave: ν₀ = 31325.78 cm⁻¹, A' = 1.10 cm⁻¹, B' = 0.29 cm⁻¹, C' = 0.28 cm⁻¹, A'' = 1.26 cm⁻¹, B'' = 0.31 cm⁻¹, and C'' = 0.28 cm⁻¹.
Figure 1. Rotationally-resolved LIF excitation spectrum of the $^{10}_0 11^1_0$ band of jet-cooled \(\text{C}_2\text{H}_5\text{O} \). The wavenumber axis was calibrated using optogalvanic neon transitions.
Similar to \(\text C_2\text H_5\text O \), the ethylthio (\(\text C_2\text H_5\text S \)) radical is a prolate symmetric top molecule. Table I summarizes the molecular parameters for \(\text C_2\text H_5\text S \) obtained from the least-squares fit of the rotational transitions. Rotational parameters were also obtained for the isopropylthio (i- \(\text C_3\text H_7\text S \)) radical and are collected together with those of \(\text C_2\text H_5\text S \) in Table I. In contrast to \(\text C_2\text H_5\text S \), the jet-cooled spectrum of i-C\(_3\)H\(_7\)S exhibited rotational structure characteristic of an oblate symmetric top molecule.

Figure 2 is an illustrative dispersed fluorescence scan for the 10\(^3\)_0 band of C\(_2\)H\(_5\)O. Besides the main CO stretch progression, there were other distinct ground state frequencies that could be identified: CH\(_3\) s-stretch (\(v''_3 = 2251 \text{ cm}^{-1} \)), CH\(_2\) sciss (\(v''_4 = 1850 \text{ cm}^{-1} \)), CH\(_3\) s-deform (\(v''_6 = 1720 \text{ cm}^{-1} \)), CH\(_2\) wag (\(v''_7 = 1366 \text{ cm}^{-1} \)), CO stretch (\(v''_{10} = 1073 \text{ cm}^{-1} \)), CCO deform (\(v''_{11} = 450 \text{ cm}^{-1} \)), CH\(_2\) rock (\(v''_9 = 943 \text{ cm}^{-1} \)) and Torson (\(v''_{18} = 386 \text{ cm}^{-1} \)).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>(\text C_2\text H_5\text S) Band at 25103.90 cm(^{-1})</th>
<th>i-(\text C_3\text H_7\text S) Band at 24773.66 cm(^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>A''</td>
<td>1.08</td>
<td>0.27</td>
</tr>
<tr>
<td>B''</td>
<td>0.73</td>
<td>0.26</td>
</tr>
<tr>
<td>C''</td>
<td>0.58</td>
<td>0.11</td>
</tr>
<tr>
<td>A'</td>
<td>0.99</td>
<td>0.27</td>
</tr>
<tr>
<td>B'</td>
<td>0.68</td>
<td>0.23</td>
</tr>
<tr>
<td>C'</td>
<td>0.57</td>
<td>0.04</td>
</tr>
<tr>
<td>(\nu_0)</td>
<td>25103.90</td>
<td>24773.66</td>
</tr>
</tbody>
</table>

In summary, the jet-cooled LIF spectra of the RO and RS radicals exhibit clearly-resolved rotational structure, which has allowed accurate determination of molecular parameters for the ground and excited electronic states involved in the transitions. In addition, the single vibronic level dispersed fluorescence spectra have provided information about the vibrational intervals in the ground state.
Figure 2. Dispersed fluorescence spectrum of the ethoxy radical obtained when the 10^3_0 band was pumped. A 0.275 m focal length monochromator equipped with a 1200 grooves/mm grating was used to record the spectrum and provided a resolution of 0.5 nm.
Acknowledgments

Financial support from the U.S. Environmental Protection Agency's Office of Exploratory Research (Grant No. R819720-01-0), the NASA Lewis Research Research Center (NAG3-1677), and the Center for the Study of Terrestrial and Extraterrestrial Atmospheres (NASA NAGW-2950) is gratefully acknowledged.

References

